Real-time photoacoustic imaging system for burn diagnosis.

نویسندگان

  • Taiichiro Ida
  • Yasushi Kawaguchi
  • Satoko Kawauchi
  • Keiichi Iwaya
  • Hitoshi Tsuda
  • Daizoh Saitoh
  • Shunichi Sato
  • Toshiaki Iwai
چکیده

We have developed a real-time (8 to 30 fps) photoacoustic (PA) imaging system with a linear-array transducer for burn depth assessment. In this system, PA signals originating from blood in the noninjured tissue layer located under the injured tissue layer are detected and imaged. A compact home-made high-repetition-rate (500 Hz) 532-nm fiber laser was incorporated as a light source. We used an alternating arrangement for the fibers and sensor elements in the probe, which improved the signal-to-noise ratio, reducing the required laser energy power for PA excitation. This arrangement also enabled a hand-held light-weight probe design. A phantom study showed that thin light absorbers embedded in the tissue-mimicking scattering medium at depths >3 mm can be imaged with high contrast. The maximum error for depth measurement was 140 μm. Diagnostic experiments were performed for rat burn models, including superficial dermal burn, deep dermal burn, and deep burn models. Injury depths (zones of stasis) indicated by PA imaging were compared with those estimated by histological analysis, showing discrepancies 200 μm. The system was also used to monitor the healing process of a deep dermal burn. The results demonstrate the potential usefulness of the present system for clinical burn diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoacoustic imaging of clinical metal needles in tissue.

The ability to visualize and track temporarily or permanently implanted metal devices is important in many applications ranging from diagnosis to therapy. Specifically, reliable imaging of metal needles is required in today's clinical settings. Currently, ultrasound is utilized to image a needle inserted into tissue in real time. However, the diagnostic value and tracking ability of these image...

متن کامل

Real-time in vivo photoacoustic and ultrasound imaging.

A real-time photoacoustic imaging system is designed and built. This system is based on a commercially available ultrasound imaging system. It can achieve a frame rate of 8 frames/sec. Vasculature in the hand of a human volunteer is imaged, and the resulting photoacoustic image is combined with the ultrasound image. The real-time photo acoustic imaging system with a hybrid ultrasound probe is d...

متن کامل

ast 3 - D dark - field reflection - mode photoacoustic icroscopy in vivo with a 30 - MHz ultrasound inear array

ihong V. Wang ashington University in St. Louis ptical Imaging Laboratory epartment of Biomedical Engineering t. Louis, Missouri 63130 -mail: [email protected] Abstract. We present an in vivo dark-field reflection-mode photoacoustic microscopy system that performs cross-sectional B-scan imaging at 50 Hz with real-time beamforming and 3-D imaging consisting of 166 B-scan frames at 1 Hz wit...

متن کامل

Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications

ABSTRACT Photoacoustic (PA) imaging is a rapidly developing imaging modality that can detect optical contrast agents with high sensitivity. While detectors in PA imaging have traditionally been single element ultrasound transducers, use of array systems is desirable because they potentially provide high frame rates to capture dynamic events, such as injection and distribution of contrast in cli...

متن کامل

Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System

Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2014